AVALIAÇÃO DA EFICIÊNCIA DE DIFERENTES DEFENSIVOS NA CULTURA DA CEVADA

Melina Sulzbach Leite¹ Marco Antonio Pavinatto² Arthur de Souza Struzinski³ Tatiani Reis Silveira⁴

Instituição: Instituto Municipal de Ensino Assis Brasil Modalidade: Relato de Pesquisa Eixo temático: Agropecuária e agroecologia

1. Introdução: A cevada é um cereal de inverno da família Poaceae, espécie *Hordeum vulgare L*. Com grande importância socioeconômica no Brasil, tendo sua produção destinada principalmente ao mercado de malte para as indústrias cervejeiras e para produção de silagem para alimentação animal, podendo ser utilizada para alimentação humana, sendo consumida em grãos, flocos ou farinha.

Entretanto, a cevada encontra alguns desafios causados pela presença de fungos e insetos. Alguns insetos que podem impactar negativamente na cultura da cevada são lagartas e pulgões, dentre seus impactos podemos citar a sucção da seiva das plantas, o que pode reduzir o número de grãos por espiga, o tamanho e o peso dos grãos e o poder germinativo das sementes, outros impactos negativos são as folhas raspadas e perfuradas.

Em relação aos fungos, os problemas mais comuns são a mancha reticular, causada pelo fungo *Drechslera teres* e a mancha-marrom causada pelo fungo *Bipolaris sorokiniana*, dentre seus efeitos podemos citar falhas na germinação, doenças foliares, contaminação de grãos, perdas na produção e impactos na saúde.

Esses problemas podem ser combatidos ou controlados por meio da aplicação de defensivos, estes podem ser químicos, biológicos ou alternativos. Os defensivos químicos são produzidos através de agentes sintéticos que, embora mais utilizados, podem impactar negativamente no meio ambiente e na saúde humana. Os defensivos biológicos tem sua composição a base de microorganismos e agentes naturais, além de ser uma opção ecologicamente melhor, também não impactam de forma negativa na saúde humana. "Dessa forma, as tecnologias devem estar voltadas para tentar superar essas limitações e

¹Estudante do Curso Técnico em Agropecuária IMEAB, sulzbachmelinasulzbach@gmail.com

²Estudante do Curso Técnica em Agropecuária IMEAB, marcopavinatto08@gmail.com

³Estudante do Curso Técnico em Agropecuária IMEAB, <u>struzinskiarthur35@gmail.com</u>

⁴Professora do Curso Técnico em Agropecuária IMEAB, tati16silveira@gmail.com

assim, os defensivos biológicos poderão, gradativamente, substituir os "agrotóxicos" nas culturas de todo o mundo" (NAKAMURA, 2014, p. 5).

Já os defensivos alternativos são uma opção que visa ser economicamente mais viável, tendo impactos positivos nas plantas e no ambiente, entretanto podem ser necessárias mais aplicações em relação aos outros pois sua eficácia varia de acordo com fatores climáticos. De acordo com Pereira (2012, p. 2) na obra "Práticas Alternativas Para a Produção Agropecuária Agroecologia", os defensivos alternativos são aqueles considerados não tóxicos, de baixa a inexistente agressividade ao homem e à natureza, eficientes no combate aos insetos e microrganismos nocivos, que não favorecem ocorrência de formas de resistência, de pragas e microrganismos, simplicidade quanto ao manejo e aplicação, e alta disponibilidade para aquisição.

O objetivo deste trabalho se baseia em avaliar a eficiência de diferentes defensivos na cultura da cevada. Portanto a comparação de defensivos de origens distintas, traz um panorama mais amplo no combate aos fungos e insetos, sendo essencial para avaliar qual produto aborda mais eficácia e gera melhores resultados de forma ágil no desenvolvimento da cultura.

2. Procedimentos Metodológicos: O estudo está sendo realizado no campo experimental da Escola Fazenda do Instituto Municipal de Ensino Assis Brasil, linha 4 Leste, no período de fevereiro a outubro de 2025. Foram utilizados 4 canteiros de 5 m× 1,2 m para execução desse projeto. Foi efetuada a semeadura de 400 gramas de cevada, com densidade de semeadura de 160 kg/ha, variedade *Cevada BRS Korbel*, no dia dois de junho de 2025. O cultivo utilizado foi o convencional, com espaçamento entre linhas de 15 cm, a aplicação de adubação ocorreu conforme análise de solo.

Os fungicidas utilizados (Quadro 1) foram o *Trichoderma harzianum* (biológico) com dose indicada de 0,80 L/ha, *Tilt* (propiconazole) (químico) com dose de 0,56 L/ha e Leite (alternativo). Os inseticidas utilizados foram *Beauveria bassiana* e *Metarhizium anisopliae* (biológico) com dose indicada de 0,50 L/ha, *Galil* (imidacloprido) (químico) com dose indicada de 0,80 L/ha e Extrato de alho e pimenta (alternativo). O fungicida alternativo foi produzido à base de 10% de leite de vaca cru e 90% de água. A recomendação comum é de 500 ml da mistura por m², logo serão utilizados 3000 ml (3 litros), 300 ml de leite adicionados em 2700 ml de água. O inseticida alternativo será produzido à base de 2850 ml de água e 150 ml do extrato de alho e pimenta, totalizando 3000 ml (3 litros) de mistura.

Para a comparação da eficácia dos métodos serão levados em consideração a sanidade da planta, a produtividade, o tamanho e peso das espigas e o custo benefício.

Quadro 1. Descrição dos tratamentos aplicados.

TRATAMENTOS	APLICAÇÕES
T1	Nenhuma aplicação, testemunha.
T2	Aplicação de inseticida e fungicida químicos, via foliar.
Т3	Aplicação de inseticida e fungicida biológicos, via foliar.
T4	Aplicação de inseticida e fungicida alternativos, via foliar.

3. Resultados e Discussões: De acordo com as primeiras avaliações (Figura 1) de altura foliar da cultura, o canteiro dos produtos biológicos tem ganhado destaque pelo melhor desenvolvimento. Em relação à primeira avaliação no mês de julho, o canteiro químico alcançou em altura foliar uma média de 23,5 cm; canteiro biológico 25,9 cm; canteiro alternativo (natural) 24,6 cm; e o canteiro testemunha 24,3 cm.

Na segunda avaliação, no mês de agosto, o canteiro biológico se destacou novamente. As médias foram no canteiro químico 29,1 cm; canteiro biológico 34,4 cm; canteiro alternativo (natural) 28,1 cm; e canteiro testemunha 25,2 cm. E na terceira avaliação as medidas coletadas foram de 36, 4 cm no canteiro químico; 45 cm no canteiro biológico; 41,8 cm no canteiro alternativo (natural); e 37,6 cm no canteiro testemunha.

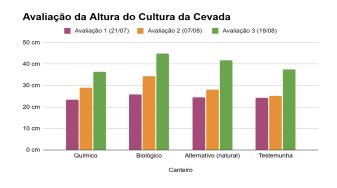


Figura 1: Avaliação da Altura da Cultura da Cevada.

4.Conclusão: Os produtos biológicos tem se destacado, indicando serem uma boa alternativa, apresentando um bom desenvolvimento até o momento avaliado. Os biológicos estão mostrando serem um suporte essencial para o alcance de resultados mais eficientes e para a redução de impactos ambientais. O trabalho ainda encontra-se em processo de desenvolvimento, diante disso, ainda restam ser analisados a produtividade, o tamanho e peso das espigas e o custo benefício.

5.Referências: NAKAMURA, Cinthia Sasamoto. **Uso de defensivos agrícolas biológicos: uma análise técnica e de mercado.** 2014. 36 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Bioquímica) — Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, 2014. Disponível em: https://sistemas.eel.usp.br/bibliotecas/monografías/2014/MBI14004.pdf. Acesso em: 19 abril. 2025.

PEREIRA, Wagner Henrique; MOREIRA, Leonardo Fernandes; FRANÇA, Fernando Cassimiro Tinoco. **Manual de práticas agroecológicas.** Belo Horizonte: EMATER-MG, 2012. 134 p. Disponível em: https://ciorganicos.com.br/wp-content/uploads/2012/09/Manual_de_Praticas_Agroecol%C 3%B3gicas-Emater1.pdf. Acesso em: 26 abril. 2025.