

Modalidade do trabalho: Relato de Experiência (de 02 a 05 páginas) **Eixo Temático**: Educação nas Ciências

A CONSTRUÇÃO DE MODELOS DIDÁTICOS NO ESTUDO DE ESTRUTURAS MICROSCÓPICAS NA DISCIPLINA DE CIÊNCIAS NO ENSINO FUNDAMENTAL¹

Laura Helena Leves Hochmuller², Denilson Dos Santos Padilha³, Guilherme Gonçalves Morais⁷, Eduarda Lisbinski Pazze⁴, João Pedro De Moura Da Silva⁵, Mariane Da Rosa Alencar⁶.

- ¹ Pesquisa realizada nas aulas de Ciências na Escola Municipal Fundamental Dr. Ruy Ramos
- ² Professora da Rede municipal de Ijuí, Anos Finais, Escola Municipal Fundamental Dr. Ruy Ramos (lauhlh@hotmail.com)
- ³ Aluno do 9° Ano da E. M. F. Dr. Ruy Ramos
- ⁷ Aluno do 9° Ano da E. M. F. Dr. Ruy Ramos
- ⁴ Aluna do 8° Ano da E. M. F. Dr. Ruy Ramos
- ⁵ Aluno do 8° Ano da E. M. F. Dr. Ruy Ramos
- ⁶ Aluna do 8° Ano da E. M. F. Dr. Ruy Ramos

Pesquisa realizada nas aulas de Ciências na Escola Municipal Fundamental Dr. Ruy Ramos

INTRODUÇÃO

A maioria dos conteúdos abordados, na disciplina de Ciências no Ensino Fundamental, corresponde a estruturas microscópicas, ou seja, que não podem ser vistas a olho nu. Neste sentindo, a construção e uso de modelos didáticos no processo de ensino aprendizagem torna-se uma ferramenta relevante na construção do conhecimento.

Depois de trabalhados conteúdos teóricos, por exemplo, o estudo das células no 8° ano e do átomo no 9° ano, a sistematização pode acontecer através da construção de modelos didáticos, complementando a parte teórica e facilitando a compreensão e significação dos conteúdos.

De acordo com Silva et al. (2015, p. 106) é importante que durante a parte teórica, os alunos entendam o que são estes modelos e como relaciona-los com os fenômenos e suas representações. Portanto, deve ser compreendido que os modelos são uma representação da realidade e não a própria realidade.

Na construção dos modelos didáticos, a utilização de materiais de baixo custo ou que podem ser reutilizados são alternativas para tornar as aulas mais atrativas e motivadoras, estimulando os educandos a pesquisarem e usarem a criatividade, além de substituírem o livro didático, tantas vezes utilizados na complementação dos conteúdos abordados.

Essa forma lúdica de aprendizagem aproxima os estudantes dos conhecimentos científicos, favorecendo a apropriação dos conceitos de forma prazerosa e significativa (AMARAL, 2010, p. 16).

Portanto, entendendo a necessidade de tornar os conteúdos de Ciências menos abstratos o objetivo do presente trabalho foi estimular os alunos do 8° e 9° ano da Escola Municipal Fundamental Dr. Ruy Ramos, a desenvolverem modelos didáticos relacionados aos conteúdos de biologia celular e estudo do átomo para complementar o conhecimento teórico.

Modalidade do trabalho: Relato de Experiência (de 02 a 05 páginas) **Eixo Temático**: Educação nas Ciências

Para tal, os alunos foram divididos em grupos durante as aulas de Ciências e utilizaram materiais como: bacia, gel de cabelo, gelatina, papel celofane, massinha de modelar, tinta, arame, palitos de dente, isopor, garrafas PET, tampinhas de garrafa, entre outros.

No 8° ano houve a confecção de modelos das células procarionte, eucarionte vegetal e eucarionte animal (figura 1) e no 9° ano a evolução dos modelos atômicos foi representada pela confecção dos modelos de Dalton, Thomson, Rutherford e Rutherford-Bohr (figura 2).

Figura 1. Modelos celulares confeccionados pelos alunos do 8° ano.

Mostra Interativa da Produção Estudantil em Educação Científica e Tecnológica

O Protogonismo Estudantil em Foc

Modalidade do trabalho: Relato de Experiência (de 02 a 05 páginas) **Eixo Temático**: Educação nas Ciências

Figura 2. Modelos atômicos confeccionados pelos alunos do 9º ano.

Após a confecção dos modelos didáticos houve a socialização do trabalho e discussão entre os colegas. Todos os modelos foram fotografados, catalogados e organizados em caixas para fazerem parte da coleção de modelos didáticos da escola.

RESULTADOS

Os modelos didáticos confeccionados durante as aulas de Ciências se mostraram eficazes em promover uma melhor compreensão dos conteúdos teóricos abordados e evitar eventuais equívocos conceituais que os alunos possuem, especialmente quando se refere a estruturas microscópicas.

Durante o processo de elaboração muitas dúvidas foram questionadas e esclarecidas, conceitos foram relembrados e associados às estruturas que estavam sendo construídas e assim ficou claro que, a participação e envolvimento dos estudantes durante a atividade de confecção até o resultado final, proporciona um aprendizado relevante em relação a conceitos que eles possuíam muita dificuldade em assimilar.

Entender determinados conceitos e relaciona-los com a realidade torna-se mais fácil quando a imaginação é substituída pela pesquisa aliada a prática. Sendo assim a utilização de modelos didáticos visa que os educandos tenham acesso a estruturas o mais próximo possível do real facilitando o processo de construção do conhecimento.

Modalidade do trabalho: Relato de Experiência (de 02 a 05 páginas) **Eixo Temático**: Educação nas Ciências

Além de estimular o lado criativo dos alunos, o presente trabalho proporcionou o uso da oralidade, quando os grupos apresentaram seus modelos e socializaram com a turma o conhecimento adquirido. E, por ser um trabalho em grupo, foi estimulada a união dos componentes, divisão das tarefas, descoberta de habilidades individuais e coletivas e solução de problemas encontrados durante o desenvolvimento.

Dar vida ao conteúdo curricular possibilita ao aluno à chance de expressar a sua compreensão, sendo assim, segundo Orlando et al. (2009, p. 2) o uso de modelos didáticos é uma alternativa para trazer uma visão mais aproximada desse mundo abstrato, na ausência de equipamentos de alto custo, que seriam microscópios e equipamentos de laboratório, com isso a construção de tais modelos facilitam o aprendizado, complementando o conteúdo escrito e, além do lado visual, esses modelos permitem que o estudante manipule o material, visualizando-o de vários ângulos, melhorando, assim, sua compreensão sobre o conteúdo abordado.

CONCLUSÃO

Foi possível perceber que quando o aluno é questionado sobre algo do qual ele nunca visualizou há imensa dificuldade de explanação, como no caso do estudo das células e do átomo.

Esta dificuldade foi minimizada no momento em que houve a junção da teoria com a prática, quando o aluno confecciona o seu modelo didático e o relaciona com a realidade.

Para construção de todo material didático leva-se tempo e custo, porém o tempo pode ser administrado com a participação de outras áreas de ensino, como por exemplo, a disciplina de artes, que pode se envolver juntamente ao trabalho auxiliando na parte criativa. Quanto aos materiais, estamos vivendo um momento onde há a produção excessiva de resíduos sólidos, que poderiam ser reutilizados como matéria-prima na confecção dos trabalhos.

Sendo assim, percebe-se a necessidade de confecção de modelos para serem utilizados na sala de aula, contribuindo para melhor participação dos estudantes e buscando novas estratégias para complementar a fundamentação teórica. Porém, vale ressaltar que o uso dos modelos didáticos só contribuirá de forma positiva se o professor planejar muito bem a parte prática (confecção) aliada à teoria

Neste contexto, a percepção que o aluno obtém a partir dessas atividades, em conjunto com o conhecimento teórico, deve possibilitar uma melhor vivência e integração do mesmo com os fenômenos que ocorrem fora do círculo escolar. Através desses argumentos Queiroz (2006, p. 63) diz que a escola deve ser nessa perspectiva, o espaço que ajuda o indivíduo a tomar consciência do mundo e de suas ações.

Sendo assim, o professor deve preparar suas aulas com o objetivo de causar estímulo, o que aconteceu na atividade proposta aos alunos, tornando esse momento uma oportunidade do professor ouvir os estudantes, saber quais suas interpretações e como podem ser instigados a olhar de outro modo para o objeto em estudo.

REFERÊNCIAS

AMARAL, Sandra Regina & COSTA, Fabiano Gonçalves. Estratégias para o ensino de ciências: Modelos tridimensionais – uma nova abordagem no ensino do conceito de célula. Universidade

O Protagonismo Estudantil em Fac

Modalidade do trabalho: Relato de Experiência (de 02 a 05 páginas) **Eixo Temático**: Educação nas Ciências

Estadual de Maringá. Disponível em: <www.diaadiaeducacao.pr.gov.br/portals/pde/arquivos/1864-8.pdf>. Acesso em: 05 de ago. 2017.

ORLANDO, Tereza Cristina; LIMA, Adriene Ribeiro; SILVA, Ariadne Mendes da; FUZISSAKIA, Carolina Nakau; RAMOSA, Cíntia Lacerda; MACHADO, Daisy; FERNANDES, Fabrício Freitas; LORENZI, Júlio César C.; LIMA, Marisa Aparecida de; GARDIMA, Sueli; BARBOSA, Valéria Cintra; TRÉZ, Thales de A. Planejamento, Montagem e Aplicação de Modelos Didáticos para Abordagem de Biologia Celular e Molecular no Ensino Médio por Graduandos de Ciências Biológicas. Revista Brasileira de Ensino de Bioquímica e Biologia Molecular. N° 01, 2009. Disponível

http://www.educadores.diaadia.pr.gov.br/arquivos/File/2010/artigos_teses/Biologia/Artigos/modelos_didaticos.pdf>. Acesso em: 05 de ago. 2017.

QUEIROZ, Marta Maria Azevedo. Dissertação de Mestrado: Projeto escola ativa: os desafios de ensinar Ciências Naturais em classes multisseriadas da zona rural de Teresina, Piauí. Universidade Federal do Piauí, UFPI, Brasil. Orientador: José Augusto de Carvalho Mendes Sobrinho. 2006. Disponível em

http://leg.ufpi.br/subsiteFiles/ppged/arquivos/files/dissertacao/2006/projeto_escolativa_marta.pdf. Acesso em: 05 de ago. 2017.

SILVA, Glenda Rodrigues da; MACHADO, Andréa Horta; SILVEIRA, Katia Pedroso. Modelos para o Átomo: Atividades com a Utilização de Recursos Multimídia. Química nova na escola. Vol. 37, N° 2, p. 106-111, maio 2015. Disponível em: http://qnesc.sbq.org.br/online/qnesc37_2/06-EQM-83-13.pdf. Acesso em: 05 de ago. 2017.

