

Evento: XXVII Seminário de Iniciação Científica

ESTIMATIVA DO CRESCIMENTO DE EUCALIPTO NA REGIÃO CELEIRO/RS ¹

ESTIMATION OF EUCALYPTUS GROWTH IN THE CELEIRO / RS REGION

Jeniffer Bortolini Schmeling², Jonas Novaczyk³, Elói Meinen Júnior⁴, Fabio Eleandro Batista Cabral⁵, Marciel Redin⁶, Mastrangello Enivar Lanzanova⁷

- ¹ Projeto de Iniciação Científica desenvolvida na Uergs Unidade Três Passos Curso de Agronomia.
- ² Bolsista de iniciação científica IniCie, discente do curso de Agronomia da UERGS Universidade Estadual do Rio Grande do Sul, Campus Três Passos
- ³ Discente do Curso de Bacharelado em Agronomia, unidade UERGS, campus Três Passos.
- ⁴ Discente do Curso de Bacharelado em Agronomia, da UERGS, Unidade Três Passos.
- ⁵ Discente do Curso de Bacharelado em Agronomia, da UERGS, Unidade Três Passos.
- ⁶ Professor Adjunto -UERGS Unidade em Três Passos.
- ⁷ Professor Orientador -UERGS Unidade em Três Passos.

INTRODUÇÃO

A região noroeste é uma das maiores produtoras de grãos e leite do Estado do Rio Grande do Sul, sendo composta por 216 municípios, onde as maiores cidades são Ijui, Santo Ângelo, Santa Rosa, São Luiz Gonzaga e Três Passos (FEE, 2011). Além das condições de clima e solo favoráveis ao cultivo de culturas produtoras de grãos, como a soja, o milho e o trigo, e também de pastagens cultivadas, como a aveia e o avezem, o cultivo de essências florestais é também viável. A influência da colonização da região por imigrantes europeus, com destaque às etnias alemã e italiana (Mantelli & Schiavo, 2007) foi decisiva para atingir o patamar de produção agrícola que se verifica nas últimas duas décadas. Como tradição familiar dessas etnias, as propriedades necessitavam de madeira para aquecimento, construção, energia para preparo de alimentos, e também como moeda de troca. Inicialmente a agricultura começou na região em áreas recém desmatadas, onde os colonos imigrantes faziam o cultivo de culturas de subsistência, para o consumo próprio da família, utilizando a madeira nativa como fonte de recursos. Após alguns cultivos, a área era abandonada e em seguida nova área era preparada e cultivada. Com a modernização da agricultura, e com o surgimento da cultura da soja na região, especialmente, as propriedades começaram a se tecnificar e aumentar a produção, gerando excedentes e renda no meio rural (Trennepohl & Paiva, 2011). Porém, o desmatamento foi alcançando níveis cada vez maiores, e ao mesmo tempo a legislação ambiental foi e é cada vez mais restritiva ao uso de madeira nativa, fazendo com que se iniciasse a produção de madeira através de cultivos exóticos na região, e o eucalipto assumiu essa função como principal espécie adaptada. Adaptação, custo de produção e facilidade de aguisição de mudas, aliada ao bom desempenho das árvores, fizeram com que o gênero eucalipto se tornasse a principal alternativa de produção de madeira nas propriedades rurais da região (Galvão et. al, 2000). Porém, o cultivo sempre foi destinado nas áreas onde não era possível fazer lavoura mecanizada, ou seja, em áreas marginais. Também, pouco ou nenhum cuidado é dispensado em relação as recomendações técnicas de cultivo referentes ao espaçamento

Evento: XXVII Seminário de Iniciação Científica

entre plantas e população final de plantas por hectare. A adubação, por ser considerado custo elevado, muitas vezes é ignorada nesses cultivos, fazendo com que o rendimento não seja potencializado como poderia ser (Higa et. al, 2000). Considerando a carência de oferta de madeira na região, a possibilidade de cultivo em áreas não mecanizáveis, o rápido crescimento das árvores, a grande oferta de mudas de qualidade na região, o baixo custo de produção e o elevado valor agregado por hectare, o cultivo de eucalipto em pequenas propriedade é uma excelente alternativa de renda e diversificação de atividades para os produtores. Além dos benefícios econômicos, a questão ambiental assume papel importante uma vez que as árvores contribuem para a conservação dos solos, proporcionam sequestro de carbono atmosférico através da fotossíntese, auxiliam na preservação e manutenção dos lençóis freáticos, proporcionam sombra para a produção animal, possibilitam a produção melífera através das floradas (Higa et. al, 2000), e melhoram a ecologia da paisagem no meio rural, cada vez mais ocupado pelas plantações em larga escala de comodities agrícolas. Dados locais que subsidiem o potencial de produção do eucalipto cultivado sob diferentes tipos de adubações, bem como populações de plantas, são inexistentes, e neste contexto surge o objetivo do presente trabalho, ou seja, estimar o potencial de crescimento do eucalipto através da elaboração de um modelo matemático.

MATERIAIS E MÉTODOS

Para atingir o objetivo principal do presente trabalho, um experimento a campo está sendo conduzido em uma área particular no município de Três Passos, RS em um Latossolo Vermelho Distrófico típico (EMBRAPA, 2013). O mesmo foi instalado em uma área anteriormente conduzida em sistema de plantio direto consolidado. A limpeza inicial da área foi realizada com auxílio de roçadeira tratorizada. Para realizar o plantio das mudas, inicialmente foi aberto de forma mecanizada uma cova de 30 cm de diâmetro e 60 cm de profundidade. Posteriormente, o solo proveniente da cova e as adubações foram homogeneizados, e finalmente colocado novamente no interior das covas. Em novembro de 2015 foi realizado o plantio das mudas de eucalipto. As mudas de eucalipto (*Eucalyptus grandis*) foram obtidas de produtor de mudas local da região de abrangência do projeto. O eucalipto foi plantado manualmente em covas com preparo localizado do solo. O espaçamento entre as plantas de eucalipto foi de 1 m na linha e espaçamento variável entre linhas, de acordo com os tratamentos.

O experimento foi instalado no delineamento experimental em blocos casualizados com três repetições. As parcelas experimentais foram constituídas de 42 m2 (7 x 6 m) a 168 m2 (7 x 24 m). Estão sendo avaliados os seguintes tratamentos de espaçamentos das plantas entre linhas: 1 x 1m; 2 x 1m (testemunha); 3 x 1m; 4 x 1m. Em cada parcela experimental de espaçamento entre linhas foi aplicado diferentes tipos de fertilizantes: pó de rocha; cama de perú; pó de rocha + cama de perú; adubação química; sem adubação. A dose de pó de rocha foi de 3.000 kg/ha aplicado em dose única no plantio do eucalipto. As doses da adubação química e da cama de perú utilizados no plantio foram de acordo com as necessidades do solo e estabelecidas conforme o Manual de Adubação e Calagem para os estados do RS e de SC da Comissão de Química e Fertilidade do RS (CQFRS, 2016). Foi utilizada adubação orgânica proveniente de cama de perú com no mínimo quatro lotes de animais. O pó de rocha (mistura de vários tipos de rochas) foi proveniente de mineradora da região de abrangência do projeto. O experimento foi conduzido em condições

21 a 24 de outubro de 2019

XXVII Seminário de Iniciação Científica XXIV Jornada de Pesquisa XX Jornada de Extensão IX Seminário de Inovação e Tecnologia

Evento: XXVII Seminário de Iniciação Científica

naturais de precipitação e sem irrigação. As plantas de crescimento espontâneo foram controladas a cada 30 dias e a desrama dos galhos realizada a cada quatro meses. O monitoramento e controle de pragas e doenças foi realizado semanalmente, e quando necessário é utilizada solução de óleo de neem a 1% (v v-1).

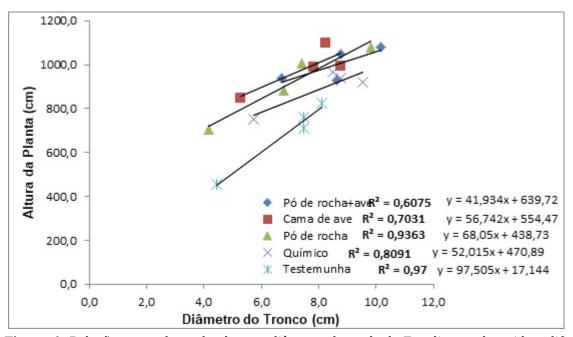
Com o propósito de avaliar o efeito de diferentes espaçamentos e adubações, o crescimento das plantas de eucalipto foi medido a cada 60 dias através de parâmetros morfológicos das plantas (altura e diâmetro do caule). Logo após o plantio foram identificadas seis plantas por tratamento, nas quais todas as avaliações morfológicas foram realizadas. Aos 30 dias foi avaliado o índice de estabelecimento das mudas de eucalipto, com a contagem das plantas vivas. Nas plantas de eucalipto selecionadas foram avaliadas a estatura das plantas e o diâmetro do caule. O diâmetro dos caules foi medido rente ao solo, com auxílio de um paquímetro. A estatura das plantas do eucalipto, do nível do solo ao último ramo, foi medida com auxílio de uma trena milimétrica até 42 meses após o plantio. A partir dessa data (42 meses), continuou-se a realização apenas da medição do diâmetro das plantas. A altura das plantas a partir desta data foi determinada através de um modelo matemático gerado no programa EXCEL® pelo método de regressão linear.

RESULTADOS E DISCUSSÕES

Na Tabela 1 são apresentados os resultados da avaliação da altura de plantas e do diâmetro do caule das plantas de eucalipto.

Tabela 1. Altura de planta e diâmetro médio de caule de eucalipto cultivado sob diferentes tipos de adubação e espaçamento entre plantas, em Três Passos, RS.

	P	ó de								
	rocha+ave		Cama de ave		Pó de rocha		Químico		Sem adubação	
Espaçamento	Altura	Diâmetro	Altura	Diâmetro	Altura	Diâmetro	Altura	Diâmetro	Altura	Diâmetro
m	cm	cm	cm	cm	cm	cm	cm	cm	cm	cm
1x1	936	6,7	845	5,3	704	4,2	751	5,7	453	4,4
1x2	1046	8,8	1100	8,2	883	6,8	938	8,8	826	8,1
1x3	1081	10,2	986	7,8	1005	7,4	920	9,6	710	7,5
1x4	930	8,6	993	8,8	1079	9,8	965	8,5	758	7,5


Observa-se que existe uma tendência em relação ao decréscimo do diâmetro da planta conforme aumenta a população de plantas por hectare (menores espaçamentos) o que pode ser explicado pela limitação de espaço para cada planta se desenvolver. Porém, ao aumentar o espaçamento, nota-se árvores com maior diâmetro, tendência verificada também por Seixas et. Al, (2009).

Na Figura 1 é apresentada a relação obtida entre altura da planta e diâmetro do caule, com suas respectivas equações de regressão e coeficientes R2. As equações geradas podem ser utilizadas como modelos matemáticos empíricos que estimam a altura das plantas a partir da idade de 42 meses, quando por questões operacionais foram finalizadas as leituras reais desta variável.

Evento: XXVII Seminário de Iniciação Científica

Figura 1. Relação entre altura da planta e diâmetro do caule de Eucalipto, submetido a diferentes tipos de adubação e espaçamento entre plantas.

Observa-se que para os tratamentos sem adubação e pó de rocha apresentaram elevado coeficiente R2, o que possibilita estimar a altura das plantas através do diâmetro do caule com maior confiabilidade por apresentarem valores desejáveis próximos de 100% ou 1, sendo indicativos de bom desempenho do modelo (TAVARES JÚNIOR et. al., 2002; BORGES et. al.,2010). Para outros tratamentos, como o pó de rocha mais ave este parâmetro não foi tão significativo, indicando que pode ter havido outros fatores interferindo nos resultados obtidos a campo.

CONCLUSÃO

Dos 5 tratamentos avaliados, 3 apresentaram elevada correlação entre as medidas de altura média de plantas e diâmetro médio do caule, medidos aos 42 meses após o transplante das mudas para o campo, sendo estes tratamento químico, pó de rocha e testemunha. Dois tratamentos (cama de ave e pó de rocha + ave) apresentaram coeficiente R2 intermediário, o que pode ser parcialmente explicado pela variabilidade do solo do experimento, que possui diferenças em relação à declividade média da área.

Deste modo, o modelo de equação de regressão pode ser usado como alternativa para estimar a altura de plantas através do diâmetro do caule. Isto facilitara na identificação da altura aproximada da plantação de eucaliptos.

Na prática, esse modelo de equação pode ser usado para estimar a quantidade de m³ de madeira dependendo da finalidade que o produtor vai dar.

Evento: XXVII Seminário de Iniciação Científica

Paralavras-chave: Viabilidade; Sustentabilidade; Diversificação de renda; Transição agroecológica.

Keywords: Viability; Sustainability; Income diversification; Agroecological transition.

AGRADECIMENTOS E FONTES DE FINANCIAMENTO: à UERGS e a IniCie pela concessão de bolsas de iniciação cientifica, e à Empresa Madeireira Weber pela disponibilidade de área.

REFERÊNCIAS

BORGES, Valéria P. et al. Avaliação de modelos de estimativa da radiação solar incidente em Cruz das Almas, Bahia. Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi, v. 14, n. 1, 2010.

EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos. Brasília, 2013. 412p.

DIAS, A. et al. Emprego de um modelo de crescimento e produção em povoamentos desbastados de eucalipto. R. Árvore, Viçosa-MG, v.29, n.5, p.731-739, 2005.

FEE - FUNDAÇÃO DE ECONOMIA E ESTATÍSTICA. Resumo Estatístico - Coredes. Disonível em: http://www.fee.tche.br/sitefee/pt/content/resumo/pg coredes.php, 2012.

GALVÃO, A. P. M. Reflorestamento de propriedades rurais para fins produtivos e ambientais. Embrapa, 1ª ed., 2000.

GAMA-RODRIGUES, E. et al. Nitrogênio, carbono e atividade da biomassa microbiana do solo em plantações de eucalipto. R. Bras. Ci. Solo, 29:893-901, 2005

HIGA, R.C.V.; MORA, A.L.; HIGA, A.R. Plantio de Eucalipto na Pequena Propriedade Rural. Colombo: Embrapa Florestas, 2000. 31 p. (Embrapa Florestas. Documentos, 54).

MANTELLI, J. & SCHIAVO, D. Caracterização ambiental do espaço agrário na região noroeste do Rio Grande do Sul. Revista Caminhos de Geografia, Uberlândia, v.7, n.20, p. 79-88, fev. 2007.

MARTINS, Ruben Jacques; SEIXAS, Fernando; STAPE, José Luis. Avaliação técnica e econômica de um harvester trabalhando em diferentes condições de espaçamento e arranjo de plantio em povoamento de eucalipto. Scientia Forestalis, v. 37, n. 83, p. 253-263, 2009.

SANTANA, R.C. Predição de biomassa e alocação de nutrientes em povoamentos de eucalipto no Brasil. Viçosa, Universidade Federal de Viçosa, 2000. 71p. (Tese de Doutorado).

STAPE, J.L.; MARTINI, E.L. Desbaste de Eucalyptus: opção de manejo para áreas com limitações ambientais ao corte raso. In: ENCONTRO TÉCNICO FLORESTAL, 5. 1991, Belo Horizonte. [Anais...] [S.L:s.n.], 1991. p.30-51.

TAVARES JÚNIOR, JÚLIO EDUARDO et al. Análise comparativa de métodos de estimativa de área foliar em cafeeiro. Embrapa Meio Ambiente-Artigo em periódico indexado (ALICE), 2002.

TRENNEPOHL, D. & PAIVA, C.A.N. A importância da sojicultura para o desenvolvimento da região noroeste do Rio Grande do Sul. Ensaios FEE, Porto Alegre, v.31, n. especial, p. 741-778, jun. 2011.

