

Modalidade do trabalho: Relatório técnico-científico Evento: VI Seminário de Inovação e Tecnologia

A TECNOLOGIA DE USO DO HIDROGEL COMO ESTRATÉGIA DE AUMENTO DA EFICIÊNCIA DE USO DO NITROGÊNIO SOBRE A PRODUTIVIDADE DE BIOMASSA E GRÃOS DE AVEIA¹

Maria Eduarda Gzergorczick², Andressa Raquel Cyzeski De Lima³, Dionatas Rodrigues Da Silva⁴, Lorenzo Ghisleni Arenhardt⁵, Osmar Bruneslau Scremin⁶, José Antonio Gonzalez Da Silva⁷.

- ¹ Pesquisa institucional desenvolvida no Departamento de Estudos Agrários, pertencente ao grupo de pesquisa em Sistemas Técnicos de Produção Agropecuária
- ² Aluna do Curso de Graduação em Agronomia da UNIJUÍ, bolsista PIBITI/CNPq, dudinha.gz2@gmail.com
- ³ Aluna do Curso de Graduação em Agronomia da UNIJUÍ, bolsista PROBIC/FAPERGS, andressaraqueldelima@gmail.com
- ⁴ Aluno do Curso de Graduação em Agronomia da UNIJUÍ, bolsista PIBIC/CNPQ, dionatas_rodrigues16@hotmail.com
- ⁵ Aluno do Curso de Graduação em Agronomia da UNIJUÍ, bolsista PIBIC/CNPQ lorenzoarenhardt@gmail.com
- ⁶ Aluno de doutorado em modelagem matemática da UNIJUÍ, osmarscremin@hotmail.com
- ⁷ Professor Doutor do Departamento de Estudos Agrários, Orientador, jagsfaem@yahoo.com.br

A aveia branca (Avena sativa L.) é um cereal de múltiplos propósitos, por ser utilizada na alimentação humana, pelo alto teor de proteínas de qualidade e fibras solúveis, e na alimentação animal, como forragem, feno, silagem e na composição de ração (Silva et al., 2015). Na busca de incrementar a produtividade de grãos de aveia é realizada a utilização de adubação nitrogenada (Mantai et al. 2015). Contudo, à medida que se aumenta as doses de N-fertilizantes, cresce o risco da ocorrência de acamamento que é o momento em que a planta perde sua posição natural, inclinase e cai sobre o solo (Silva et al., 2015). Hawerroth et al., (2015) ainda destacam que o incremento da dose nitrogênio juntamente com a época correta de sua aplicação, aliada a condições favoráveis de cultivo, mostram respostas significativas à produtividade de grãos. No entanto, em anos desfavoráveis a eficiência de aproveitamento pode ser comprometida com perdas de volatização e lixiviação ao ambiente, que além de gerar poluição também reduz a produtividade e aumenta os custos de produção, principalmente por condições desfavoráveis de umidade do solo (Silva et al., 2015). Uma alternativa adotada em diversas culturas para conservação de umidade do solo é o uso de hidrogeis a base de poliacrilamida (Ventroli e Venturoli, 2011). Os autores ainda destacam que esses polímeros hidroabsorventes melhoram a capacidade do solo em reter água e nutrientes para as plantas, atuando como condicionadores. Estudos da eficiência de uso de hidrogel em condições que permitam analisar sua interatividade com nitrogênio podem viabilizar o emprego desta tecnologia nos sistemas de produção de aveia no sul do Brasil.

O objetivo do trabalho é determinar se as condições de uso do biopolímero hidrogel aumentam a eficiência de aproveitamento do N-fertilizante na produtividade de biomassa e grãos de aveia em sistema de sucessão de alta liberação de N-residual.

O experimento foi conduzido a campo em 2015, no Instituto Regional de Desenvolvimento Rural (IRDeR), pertencente ao Departamento de Estudos Agrários (DEAg) da UNIJUÍ, Augusto Pestana, RS, Brasil. As sementes foram submetidas a teste de germinação e vigor em laboratório, a fim de

Modalidade do trabalho: Relatório técnico-científico Evento: VI Seminário de Inovação e Tecnologia

corrigir a densidade de semeadura. A semeadura foi realizada com semeadora-adubadora na época recomendada para a cultura. A aplicação do hidrogel foi feita junto às linhas de plantio enquanto que o nitrogênio foi aplicado em V4 (estádio de quarta folha visível). No estudo, foram conduzidos dois experimentos, um para quantificar a taxa de produtividade de biomassa, pelos cortes realizados a cada 30 dias até o ponto de colheita, e outro, para a estimativa da produtividade de grãos e acamamento. O delineamento foi o de blocos ao acaso com quatro repetições, seguindo um esquema fatorial 4x4, sendo os fatores doses de nitrogênio (zero, 30, 60, 120 Kg ha-1) e hidrogel (zero, 30, 60, 120 Kg ha-1), respectivamente em condição de cultivo com alta liberação de N-residual. (sistema soja/aveia).

As parcelas foram constituídas por cinco linhas espaçadas 0,20 m entre si com cinco m de comprimento, totalizando, 5 m² por parcela. O momento de colheita de grãos foi aquele também definido como o último corte no experimento direcionado à análise da produtividade de biomassa (120 dias), estádio próximo ao ponto de colheita, com umidade de grãos ao redor de 15%. As plantas das parcelas foram trilhadas com colheitadeira estacionária e os grãos direcionados ao laboratório para correção da umidade para 13% e pesagem para estimativa da produtividade convertida para a unidade de um hectare. No experimento visando quantificar a produtividade de biomassa total ao longo do desenvolvimento das plantas, a colheita do material vegetal foi realizada rente ao solo, a partir da coleta de um metro linear das três linhas centrais de cada parcela, no período de 30, 60, 90 e 120 dias após a emergência, totalizando quatro cortes. As amostras com a biomassa verde foram direcionadas à estufa de ar forçado na temperatura de 65 °C, até atingir peso constante. Após, foram pesadas em balança de precisão e com posterior estimativa da matéria seca total convertida em kg ha-1. Foi realizada regressão linear em cada dose de hidrogel e nitrogênio para quantificar a taxa de produtividade de biomassa e teste de comparação de médias para análise da produtividade de grãos e acamamento, a partir das equações quadráticas foi estimulada a dose ideal de N-fertilizante para a máxima produtividade de grãos. Para todas estas análises estatísticas foi empregado o programa computacional Genes (Cruz, 2013).

Na análise da precipitação pluviométrica e temperatura máxima no ciclo da aveia (Figura 1), em 2015, é possível observar maior volume e distribuição de chuvas no final do ciclo da aveia, proporcionando excesso de umidade e baixos períodos de insolação. Sabe-se que chuvas ao longo do ciclo reduzem a eficiência de aproveitamento de luz na fotossíntese e na fase de enchimento e maturação interfere na produtividade e qualidade de grãos, conforme Arenhardt et al.(2015), o que somado as médias de produtividade de grãos (Tabela 1) caracteriza o ano como desfavorável (AD) ao cultivo.

Na tabela 1, é possível verificar o incremento da taxa de produtividade de biomassa pelo aumento da dose de nitrogênio, independente da condição de hidrogel, sendo a maior taxa de produtividade de biomassa observada na condição 30 kg ha-1 de hidrogel com a dose mais elevada de nitrogênio (120 kg ha-1), com uma taxa de produtividade de biomassa estimada de 134 kg ha-1 dia-1. Ainda na tabela 1, é possível observar que a produtividade de grãos está fortemente ligada a produtividade de biomassa. O incremento da dose do nitrogênio embora tenha favorecido a produtividade de grãos, também promoveu o maior acamamento de plantas, o que pode dificultar a colheita e prejudicar a produtividade e qualidade dos grãos.

Na proposta de verificar melhoria da eficiência de uso do nitrogênio pelo hidrogel, na Tabela 2, a máxima eficiência de uso do nitrogênio à produtividade de grãos foi obtida com 75 kg ha-1 na

Modalidade do trabalho: Relatório técnico-científico Evento: VI Seminário de Inovação e Tecnologia

ausência de hidrogel. Esta dose promoveu uma expectativa de produtividade de grãos de 2993 kg ha-1 com 36% de acamamento. No uso de hidrogel em 30 e 60 kg ha-1, houve redução de uso do nitrogênio em 73 e 71 kg ha-1, respectivamente, gerando expectativa de produtividade de 3180 e 3017 kg ha-1, respectivamente. Nestas doses do biopolímero, os valores obtidos de acamamento foram similares à dose padrão. Na dose mais elevada de hidrogel, houve redução da eficiência de uso do nitrogênio, indicando maior uso do nutriente com menor produtividade de grãos e elevado acamamento.

O uso de hidrogel representa uma tecnologia que aumenta a eficiência de aproveitamento do nitrogênio na produtividade de biomassa e grãos de aveia. As doses de uso do biopolímero hidrogel com 30 e 60 kg ha-1 aplicado junto a semeadura promovem resultados mais satisfatórios no aproveitamento de nitrogênio.

AGRADECIMENTOS

À UNIJUÍ CAPES, CNPq e à FAPERGS, pelo aporte dos recursos destinados ao desenvolvimento deste estudo e pelas bolsas de Iniciação Científica e Tecnológica, de Pós-graduação e de Produtividade em Pesquisa.

REFERENCIAS

ARENHARDT E. G. et al. The nitrogen supply in wheat cultivation dependent on weather conditions and succession system in southern Brazil. African Journal of Agricultural Research, v.10, p.4322-4330, 2015.

CRUZ, C. D. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, v.35, n.3, p.271-276, 2013.

HAWERROTH, M. C. et al. Redução do acamamento em aveia-branca com uso do regulador de crescimento etil-trinexapac. Pesquisa Agropecuária Brasileira, v.50, n.2, p.115-125, 2015.

MANTAI, R. D. et al. The effect of nitrogen dose on the yield indicators of oats. African Journal of Agricultural Research, v. 10, p.3773-3781, 2015.

SILVA, J. A. G. da et al. A expressão dos componentes de produtividade do trigo pela classe tecnológica e aproveitamento do nitrogênio, Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, no.1, p.27-33, 2015.

VENTUROLI, F. & VENTUROLI, S. Recuperação florestal em uma área degradada pela exploração de areia no distrito federal. Ateliê Geográfico Goiânia-GO, v.5, n.13, p.183-195, 2011.

Modalidade do trabalho: Relatório técnico-científico Evento: VI Seminário de Inovação e Tecnologia

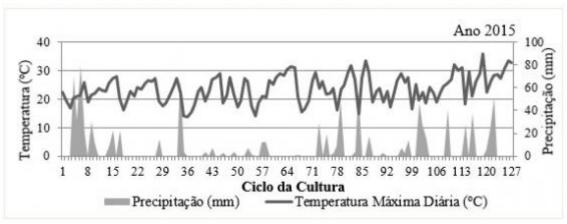


Figura 1. Precipitação pluviométrica e temperatura máxima no ciclo da aveia.

Tabela 1. Regressão da produtividade de biomassa e médias da produtividade de grãos e acamamento sob distintas doses de hidrogel e nitrogênio.

Hidrogel	Nitrogênio	y= a ± bx	R ²	Р	PG	AC
(kg ha-1)	(kg ha-1)	(kg ha-1)	(%)	(bx)	(kg ha-1)	(%)
0	0	-585+48x	91	*	1999 b	4 c
	30	-1279+85x	86	*	2748 a	8 c
	60	-1433+104x	91	*	2874 a	43 b
	120	-1560+116x	88	*	2640 a	52 a
30	0	-766 + 55x	91	*	2172 b	8 c
	30	-1308+81x	90	*	2893 a	9 c
	60	-1213+98x	91	*	2970 a	37 b
	120	-1977+134x	91	*	3065 a	53 a
60	0	-851+58x	91	*	2036 d	3 d
	30	-1299+85x	90	*	2783 b	23 c
	60	-1234+98x	93	*	2948 a	43 b
	120	-1712+118x	89	*	2615 c	57 a
120	0	-1175+69x	89	*	2000 c	4 d
	30	-1391+95x	89	*	2485 b	33 c
	60	-1394+114x	92	*	2786 a	57 b
	120	-1578+120x	93	*	2807 a	79 a

y= produtividade de biomassa; AC= acamamento; PG= produtividade de grãos; R2= coeficiente de determinação; P(bx)= probabilidade do parâmetro de inclinação da reta; * = significativo a 5% de probabilidade de erro, pelo teste t; Médias seguidas pelas mesmas letras minúsculas dentro de cada dose de hidrogel compara doses de nitrogênio constituindo grupo estatisticamente homogêneo pelo modelo Skott-Knott a 5% de probabilidade de erro.

Modalidade do trabalho: Relatório técnico-científico **Evento**: VI Seminário de Inovação e Tecnologia

Tabela 2. Regressão para estimativa da dose ideal de nitrogênio à produtividade de grãos com expectativa do acamamento no de uso do hidrogel.

Hidrogel (kg ha ⁻¹)	$y=b_0\pm b_1x\pm b_2x^n$	R ² (%)	P (bixn)	Nideal (kg ha ⁻¹)	YE
0	PG= 2036 + 25,51x - 0,17x2	96	*	75	2993
0	AC=3,95+0,43x	84	*	75	36
20	PG= 2224 + 21,5x - 0,15x ²	94	*	70	3180
30	AC = 5,35 + 0,41x	89	*	73	35
60	PG= 2066 + 26,88x - 0,19x2	98	*	74	3017
60	AC = 8,4 + 0,44x	93	*	71	40
400	PG= 1999 + 21,9x - 0,13x ² 97		*	0.4	2859
120	AC = 11,6 + 0,61x	93	*	84	63

PG= produtividade de grãos (kg ha-1); AC= percentual de acamamento (%); R²= coeficiente de determinação; P(bixn) = probabilidade do parâmetro de inclinação; *= significativo a 5% de probabilidade de erro, pelo teste t; Nideal=dose ideal de nitrogênio estimada pela equação de regressão da produtividade de grãos; YE= valores estimados.

